

Immunologic Potency Testing of a Multiclade HIV Vaccine

Richard A. Koup, MD Potency Workshop October 11, 2005

Estimated Prevalence of HIV-1 env Subtypes by Region, 1998

Clades are not Serotypes

- Clades of HIV are classified based on protein sequences, not a lack of serologic cross-reactivity
 - Significant (though not complete) cross-reactivity in binding and neutralizing activity between clades
- Probably represent separate and distinct transmissions into the human population
- Clade differences are greatest within Env
- Divergence of amino acid sequences within defined antibody and T cell epitopes between clades (esp within Env) indicates that a vaccine-induced response to one clade may sub-optimally protect against challenge with another
- Immunization with 3 Env clades in Rhesus Monkeys gave better cross-reactive antibody and T cell responses than immunization with single Envs (without loss of response to single Env)

Phylogenetic Relationships of Globally Prevalent Strains

Major Assumptions Behind Initial Vaccine Research Center Vaccine Approach

- Vaccine-induced CD8+ CTL can control HIV infection
 - Delayed disease progression in an individual
 - Reduced spread within a population
- Envelope antigens are critical
 - Additional T-cell epitopes
 - Platform for NAb responses
- DNA priming and recombinant adenovirus boost is a potent platform for inducing CD8+ CTL
- Multivalency will diminish immune escape
- The epidemic requires a globally relevant vaccine

VRC HIV Vaccine Development

DNA prime

IFN-γ ELISpot Results

Antibody ELISA Results

Env Constructs and Immune Assays

- T Cell Responses: IFN

 γ ELISpot or combined cytokine ICS assays
- Antibody responses: ELISA and NA assays
- Overlapping peptides (15-mers by 11) for each Env construct (168 peptides each). Only 5 peptides match across all 3 clades
- Whole purified proteins

Our Goal

- Test potency of each component of the vaccine (3 Envs, Gag, Pol, Nef) when the combined (vialed) product is administered to mice
- If this is not possible, test potency of each component of the vaccine (3 Envs, Gag, Pol, Nef) when each component (prior to mixing/vialing) is administered to mice

The System We Propose(d) to Use:

- Balb/C mice
- Vaccinate with Env A, Env B, Env C, Gag, Pol, and Nef
- Test T cell and Antibody responses using overlapping peptides to each component of the combined vaccine
- Use immunodominant peptides to assess potency as each component of the vaccine is modulated within the mix

Gag, Pol and Nef are not a Problem

- Immunodominant T cell and antibody epitopes mapped
- In process of doing huge studies in mice to determine how changes in dose of one component of the vaccine within the 6 plasmid (DNA) or 4 vector (rAd5) mix affects the immune response to that component
- However.....

Peptide-specific Antibody Responses in Mice

Antibody Response Focuses on Peptide 27 When all Three Clades are Given

Env A27: TDIISLWDQSLKPCV

Env B27: HEDIISLWDQSLKPC

Env C27: EDIISLWDQSLKPCV

The clade-specific peptide responses are lost. This will make it very difficult to quantify a loss of immunogenicity of one of the envelope components within the 3 envelope mix in a potency assay.

For T cell Responses:

What we have so far:

PEPTIDE	Region	ALL	A only	B only	All but A	All but B	All but C
Best-clade specific	А	✓	✓			✓	✓
EnvA079	А	✓	✓			✓	√
EnvA128	А	✓	✓			✓	✓
cross react	Α	✓	✓	✓		✓	✓
Best-clade specific	В	✓		✓	✓		✓
EnvB017	В	✓		✓	✓		✓
cross react	В	✓	√	✓	✓		✓
Best-clade specific	С	✓			✓	√	
cross react	С	✓	✓	✓	✓	✓	

Conclusions

- Immunologic potency testing of a multiclade HIV vaccine will be challenging
- The phenomenon of immunologic dominance within multiclade, multicomponent vaccines may impact the analysis of potency results

Immunology Core Section Dr. Robert Bailer

Back Row, Left to Right: Adrienne Campbell, Laurie Lamoreaux, Richard Koup, Ellen Turk, John Rathmann Front Row, Left to Right: Robert Bailer, Mara Abashian, Jennifer Fischer